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ABSTRACT: In this paper we have defined generalized Lucas sequence {Uﬁ:’)} generalized companion Lucas
sequence{Vﬁla)}. The congruent properties proved for Lucas sequence{U,} and the Companion Lucas
Sequence {V,}. By using these properties the possible squares are identified in the generalized Lucas
se (v} lized ion L v}

quence (U, i generalized companion Lucas sequenceV, "~ .

Key words: Square Number, Lucas Sequence, Companion Lucas Sequence, Generalized Lucas Sequence,
Generalized Companion Lucas Sequence.

2010 AMS (Mathematical Classification):11B37
I. INTRODUCTION

Suppose that P and Q be non-zero relatively prime integers. The Lucas sequence{U,} and the Companion Lucas
Sequence {V,} with the parameters P and Q are defined by
Uy=0 U=1 U,=PU,_;—QU,_, (n=2) (1.1)
and V=2, V,=P,V,=PV,_,—QV,_, (n=2) (1.2)
Paulo Ribenboim and Wayne L. Mc. Daniel [3] have proved that U,, is a square term only if n = 0,1,2,3 or 6 and
V, is a square only if n = 1,3 or 5 in these sequences. Later A. Bremner and N. Tzanakis [1] have proved that 12 th
or 9" term is a square in the Lucas Sequence.

Now we define for a fixed integer o > 0 two new sequences called Generalized Lucas Sequence {U,(lu)} defined by
() _ () _
Ejga T7‘O'Ula_(1) a (@)
a a a
u,” = ;(36! -DU," - ;(a +1)U,>, for n=2 (1.3)
and Generalized Companion Lucas Sequence {Vn(a)} defined by

=2 ¥ =5Ga-1)
B =2GBa - D - 2@+ DV for  n=2. (1.4)
We have proved possible squares in the sequences (1.3) and (1.4).

II. The first few polynomials of Generalized Lucas Sequence {Uﬁ:’)} and Generalized Companion Lucas

Sequence {Vﬁl")} are given as follows.
Table 1(a) Generalized Lucas Sequence.

n U‘r(La)
0 0
1 1
1
2 §(3a2—a)
1

3 Z(9a4—6a3+a2—2a)
4 1

= a®°—27a°> —3a” —9a° + 4a
c 8276275349342

1
E(81a8 —108a’ — 30a® + 35a* + 2a® + 4a?)
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Table 1(b) Generalized Companion Lucas Sequence.

n Vn(a)
0 2
1
1 > (Ba? —a)
1
2 y (9a* — 6a® —3a? —4a)
1
z 5(27a° = 27a° — 9a* ~ 130’ + 6a?)
1
c E(810:8 —108a’ — 18a® — 36a° + 49a* + 8a® + 8a?)

1
5(243690 — 405a° — 90a” + 255a° + 195a° + 30a* — 20a%)

IIL In this section we have presented some properties of {U,,} and {V,,}. The following properties are well

known, in fact for all integers m and n.
an_bn

U,=—— and V, =a"+Db" (3.1)
Where a = 1+/5 and b = 1+T\E

Unin = UV —a™b"Uyy_p (3.2)

Vn = VoV — a™™ V,_, (3.3)

Uzn = UnW (3.4)

Upps1 = UnaV, — (@)™ 3.5)

Vo = V2 = 2(ab)" (3.6)

Vons1 = Vay1Vy — (@ + b)(ab)? (3.7

3.8 The congruent properties of {U,,} and {V,,} are proved as follows.
Lemma: (i) U,;, = —1 (mod 8) for k =2
(i) Vo, = —1 (mod 8) for k =2
(iii) Upg 41 = —1 (mod 8) for k = 2
(iv) Vors1 =1 (mod 8) for k > 2
Proof: (i) is trivial if k = 2, since U, = —1 from table 2(C)
For k > 2, we have by (3.4) Uy, = U,V
Uy, = UV, =1(-1) = -1 (mod 8)
(ii) by (3.6), we have V,;, = V;.2 — 2(ab)*
Fork =2, V,, =V, —21 =(-1)>-2= -1 (mod 8)
(iii) by (3.5), we have Uy = Uiy Vi — (ab)*
Fork = 2, Uyyq = Us.V, — (ab)? = —1 (mod 8)
(iv) by (3.7), we have Vyppq = Vi1V — (a + b)(ab)*
For k=2, Vyppq =VsVo— (a+b)(ab)? = (=2)(—1) —1=1 (mod 8)
Which completes the proof of the Lemma.
3.9. Note: For any integer m, we have
(iym? =0,1or 4 (mod 8)
(i)m?=0,1,4,9,16,17 or 25 (mod 32)

IV. MAIN THEOREMS

4.1 Theorem: U is a square if and only if n = 1 or 2.
Proof: Let U,(Ll) = Uy, clearly U, and U, are squares.

Conversely, suppose U, = m? for some integer m. Then n = 1 or 2, since for n > 2, we have m? = U,
—1 (mod 8). By (i) and (iii) of Lemma, which cannot true for the note (3.7).

4.2 Theorem: Vn(l) is a square if and only if n = 1.

Proof: Let Vn(l) =V,, clearly V] is a square.

Conversely, suppose V,, = m? for some integer m. Let neither n is even nor an odd integer greater than 1.
In fact, if n = 2k where k >0, Vj, = a™ + b™ = 2. Which is obviously not a square. f n=2k+1andk > 1
then (iv) of Lemma gives V, =1 (mod 8). Proving that V, cannot be a square.
4.3 Theorem: U,(La) isasquareif n = 0orl.
Proof: We prove the theorem by the principle of mathematical induction on a.
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We have Uéa) = 0 and Uéa) =1, Puta =1, from theorem 4.1 and Uél) and Ul(l) are squares. Therefore the result
is true for ¢ = 1. Assume that it is true for @ = m. We have to prove it is true fora =m + 1, then Uémﬂ) =
0 and U™ =1 (for all a).
4.4 Theorem: US" + 1 is a square if and only if n = 0 or 3.
Proof: Let U,(Ll) = U,, clearly Uy + 1 = 1 and U; + 1 = 1, Part of the theorem holds.

Conversely, suppose U,, + 1 is a square, thenn cannot be even and n > 0,
since U, +1 =2 and for m > 2, we have U,;;,;; + 1 =0 (mod 8), by Lemma 3.7. Again if n = 2k + 1 with
k = 2 then U, + 1 = 12 (mod 32), Therefore U,, + 1 is not a square by note(3.9)
4.5 Theorem: U™ + 1 is a square if n = 0.
Proof: We prove the theorem by the principle of mathematical induction on a.
We have Uéa) = 0. Put @ = 1, from theorem 4.4 and Uéa) +1 =041 = 1. Therefore the result is true for @ = 1.
Assume that the result is true for @ = m. We have to prove that it is true fora = m + 1. Puta = m + 1, then
U(gm+1)
a>0.
4.6 Theorem: V" — 1 is a square if and only if n = 0.
Proof: Let V™V =V, ifn =0, clearly Vy —1 =1

Conversely, suppose I, — 11is a square, if n > 1 cannot hold. Then n = 2m + 1 for some integer m > 1
by Lemma 3.8, wehave V, — 1 =V,,,,;, —1=1 (mod 8) and hence V,, — 1 is not a square.

=0+ 1 =1 (for all ). By the principle of mathematical induction Ur(La) + 11is a square for all integers

4.7 Theorem: V) — 1 is a square if n = 0.
Proof: We prove the theorem by the principle of mathematical induction on o.

We have Vo(a) = 2. Puta = 1, from theorem 4.6 and we have Vn(l) — 1 =1isasquare if n = 0. Therefore
the result is true for & = 1. Assume that the result is true for ¢ = m. We have to prove that it is true for « = m + 1.

Then o = m + 1, then I/O(m+1) — 1 =1 (for all «). Therefore by the principle of mathematical induction Vn(a) -1
is a square for all integers @ > 0 and for n = 0.

V. DISCUSSIONS

The recursive sequences (1.3) and (1.4) the following are always square numbers (i) Ur(Ll) — 1 is never a square for
n<5

(ii) Vn(l) + 1 isnever a square forn < 5
(iii) US> + 1 is a square ifn = 2

@iv) Vn(s) +1is asquare forn =1

) Vn(z) + 1is asquare forn =3

VI. CONCLUSION

The Lucas sequence U,(La) is a square if n=10r2 and U,(Ll) + 1 is a square if and only if n = 0 or 3. The
companion Lucas sequence Vn(a) is a square forn = 1.
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